1 CSCG 2025 - Air Smeller

Category: Web

Difficulty: Hard

Author: D K

Flag: CSCG{0ld_Alr_Smeels_B4d}
Description:

| found this website where you can rate the smell of the air, after purification. Do you know
a good purifier, maybe you can recommend some purifier to the people.

2 Introduction

This web challenge aimed to identify and exploit a bypass in DOMPurify to achieve Cross-Site
Scripting (XSS) and ultimately steal the admin’s cookie. The challenge description already hints at
the role of a sanitizer in the exploitation process.

In the following sections, we walk through the entire process, from the initial analysis to the final
exploitation.

3 Reconnaissance

Fortunately, the source code for the website is provided in this challenge. It is a small website built
with Next.js using React and written in TypeScript. An admin bot, using Chromium, checks the web-
site every 60 seconds and carries the flag in its cookie. Moreover, the attribute httpOnly: false
allows us to access the cookie via JavaScript, so there is a high probability that this is an XSS
challenge.

On the landing page, where we can submit our ratings, the input is reflected in both input fields:

Air Smeller Hard - Web

The air purification has made a significant difference. It smells fresh and clean, although
there's a slight residual scent from the purification process itself.

Dr. Lisa Nguyen

test hello
test <script=alert("gib xss plz")</script> hello

Leave your own rating:

Comment:

Author:

But it seems like there is some kind of sanitizer removing malicious input from the comment
field and thus preventing XSS. A closer look at the source code in src/components/ratings.tsx
reveals that the sanitizer used for filtering malicious comments is DOMPurify, a very popular and
powerful XSS sanitizer. The sanitized output is then injected into the comment section using
React's dangerouslySetInnerHTML . It functions similarly to the traditional = innerHTML in vanilla
JavaScript. Thus, the comment input field acts as an HTML injection vector. The reason for this
design decision could be to allow users to style their comments in a fancy way with some HTML
tags. This means that bypassing DOMPurify should be enough to have an XSS.

In this challenge, DOMPurify is used server-side, so it requires a DOM parser. The challenge
uses jsdom for this purpose and a look at the package.json reveals that DOMPurify is slightly
outdated. Notably, to exploit the mXSS-style bypass, which was patched in the latest version,
requires a non-default configuration of DOMPurify, enabling the = SAFE_FOR_TEMPLATES option; we
don’t have the luxury of this in this challenge.

More interestingly, the version of jsdom v19.0.0 is quite old. Reviewing the README of DOMPurify
confirms that the older version of jsdom may introduce vulnerabilities:

Writeup by vurlo 2

https://github.com/cure53/DOMPurify?tab=readme-ov-file#running-dompurify-on-the-server

Air Smeller Hard - Web

Running DOMPurify on the server requires a DOM to be present, which is probably no
surprise. Usually, jsdom is the tool of choice and we strongly recommend using the latest
version of jsdom.

Why? Because older versions of jsdom are known to be buggy in ways that result in XSS
even if DOMPurify does everything 100% correctly. There are known attack vectors in, e.g.
jsdom v19.0.0 that are fixed in jsdom v20.0.0 - and we really recommend keeping jsdom up
to date because of that.

4 Bypassing DOMPurify - Finding differentials

Bypassing DOMPurify is challenging when it is used correctly. Typically, you would use the latest
version of DOMPourify client-side so that the sanitizer uses the same DOM parser as the browser
rendering the website. When using a sanitizer like DOMPurify, the untrusted payload is parsed at
least two times: The first time, by the DOM parser used by DOMPurify, and the second time by the
DOM parser of the browser, the website is being rendered on. Using the DOMPurify client-side
avoids parser differentials that originate from DOMPurify using a different parser in the backend
than the client. Nevertheless, bypassing even the latest version of DOMPurify running client-side is
not impossible. If you are interested in the whole topic around mutation XSS (mXSS), | can highly
recommend this article.

As mentioned, the challenge uses DOMPurify server-side with an outdated DOM parser jsdom.
This design decision might be intended to prevent malicious payloads from reaching the server’s
database, reducing the overhead for clients and ensuring that even a tampered client gets sanitized
content. Essentially, the challenge goal is to find bugs in the parser or serializer implementation
of jsdom and exploit them. With the help of such a bug, we could craft a malicious payload so
the DOMPurify sanitization process using jsdom won’t detect it. But when the payload is being
rendered in Chromium with its underlying DOMParser, this will lead to malicious behavior. To find
the differential, we have to dive deep into the source code of jsdom and its underlying parser and
serializer, parseb.

With the outdated jsdom version, we review the corresponding release notes and discover several
noteworthy fixes introduced in jsdom v20.0.0:

Updated parse5, bringing along some HTML parsing and serialization fixes. (fb55)

This change motivates us to examine the exact code modifications. Aside from updating the
underlying HTML parser and serializer parse5 to v7.0.0, nothing particularly exploitable in jsdom
itself is immediately apparent. Further investigation into the release notes for parse5 v7.0.0 reveals
a significant pull request titled:

Writeup by vurlo 3

https://mizu.re/post/exploring-the-dompurify-library-bypasses-and-fixes
https://github.com/jsdom/jsdom/releases/tag/20.0.0
https://github.com/jsdom/jsdom/commit/2e355263e5cae2e4647b0956f777c0abd2c62d5b
https://github.com/inikulin/parse5/releases/tag/v7.0.0
https://github.com/inikulin/parse5/pull/383

Air Smeller Hard - Web

Refactor & improve serializer

Moreover, an interesting issue describes a bug in the HTML serializer where the namespace of
any content is not properly checked before decoding and applying it to the corresponding node.
For example, given input like:

<svg><style><</style></svg>

<style><</style>

jsdom’s innerHTML serializes it as:

<svg><style><</style></svg>

<style>< </style>

whereas Chromium’s DOMParser, following the HTML specification, serializes it as:

<svg><style><</style></svg>

<style><</style>

In short, jsdom decodes the opening tag in the SVG namespace, which is not valid per the HTML
specification. During initialization, DOMPurify creates a document with:

doc = new DOMParser().parseFromString(dirtyPayload, PARSER _MEDIA TYPE);

The jsdom implementation of parseFromString uses the parseb parser. Eventually after saniti-
zation, DOMPurify calls:

let serializedHTML = WHOLE_DOCUMENT ? body.outerHTML : body.innerHTML;

This will internally use the parse5 serializer, which has the aforementioned namespace-dependent
bug. Thus, the malicious payload is processed in the following stages, each potentially modifying
its HTML structure and representation:

Dirty HTML — parse5 parser — DOMPurify sanitizer — parse5 serializer — Chromium DOMParser

DOMPurify assumes that the DOM parser implements the HTML specifications correctly. In this
case, it doesn’tinterpret the < as an opening tag, because it relies on the output of the jsdom
serializer. The serializer treats it as a text node #text withinthe style tag, similar to regular
content, for example,ina p tag. However, after sanitization calling innerHTML and thus using

Writeup by vurlo 4

https://github.com/inikulin/parse5/issues/333
https://html.spec.whatwg.org/#serialising-html-fragments
https://html.spec.whatwg.org/#serialising-html-fragments
https://github.com/inikulin/parse5/blob/v6.0.0/packages/parse5/lib/parser/index.js
https://github.com/inikulin/parse5/blob/v6.0.0/packages/parse5/lib/serializer/index.js

Air Smeller Hard - Web

the buggy parse5 serializer, the harmless < is decoded as an actual HTML opening tag <
, causing DOMPurify to return a malicious payload with the encoded tag. So effectively, in this
challenge DOMPurify itself potentially makes harmless inputs harmful.

There are additional bugs in parse5 v6.0.0, such as this one, which might also be exploitable in this
challenge. The difference from the previously described bug is that this one occurs in the parse5
parser, whereas the earlier bug was in the parse5 serializer. According to the HTML specification,
the closing tags </br> and </p> must not be children of <svg> or <math> elements. If
they are placed inside these elements, they are automatically moved outside, effectively closing
the <svg> or <math> tags. Forinstance, a payload like:

<svg></br><a>

will be serialized by jsdom’s innerHTML as

<svg>
<a></svg>

while Chromium’'s DOMParser serializes it as:

<svg></svg>
<a>

It is worth noting that all of this code search in GitHub was not necessary to uncover the parser dif-
ferentials and even a working payload for the challenge. For more insights into parsing differentials
used to bypass HTML sanitizers like DOMPurify, | refer to this research paper.

5 Exploitation

The final payload is straightforward once you understood the serializer bug in parseb5:

<svg><style><a>

By using the encoded opening tag < , we can inject an image tag with an onerror event
past the DOMPurify sanitizer. This event triggers a redirect to our webhook, effectively exfiltrating
the cookie that contains the flag CSCG{01d_Alr_Smeels_B4d} .

6 Mitigation

The vulnerability is about using DOMPurify with an outdated version of jsdom (and consequently
an outdated parse5 version). Updating these dependencies would resolve the issue. So always

Writeup by vurlo 5

https://github.com/inikulin/parse5/pull/451
https://www.ias.cs.tu-bs.de/publications/parsing_differentials.pdf

Air Smeller Hard - Web

precisely read the documentation on how to use security-relevant libraries like DOMPurify. Addi-
tionally, shifting DOMPurify from a server-side to a client-side implementation would prevent parser
and serializer differentials, as the same DOM parser would be used throughout. Implementing a
robust Content Security Policy (CSP) further restricts JavaScript execution, adding another layer
of defense against XSS. Morover, try to use httpOnly cookies on your website if none of your
javascript needs to access cookies. Finally, if not absolutely necessary, avoid using = innerHTML

(orin this case dangerouslySetInnerHTML) with untrusted input.

Writeup by vurlo 6

	CSCG 2025 - Air Smeller
	Introduction
	Reconnaissance
	Bypassing DOMPurify - Finding differentials
	Exploitation
	Mitigation

